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ABSTRACT

Sparse-Representation-Based Classification withStructure-Preserving Dimension Reduction

Report Title

Sparse-representation-based classification

(SRC), which classifies data based on the sparse reconstruction

error, has been a new technique in pattern recognition.

However, the computation cost for sparse coding

is heavy in real applications. In this paper, various

dimension reduction methods are studied in the context of

SRC to improve classification accuracy as well as reduce

computational cost. A feature extraction method, i.e.,

principal component analysis, and feature selection methods,

i.e., Laplacian score and Pearson correlation coefficient,

are applied to the data preparation step to preserve

the structure of data in the lower-dimensional space.

Classification performance of SRC with structure-preserving

dimension reduction (SRC–SPDR) is compared to

classical classifiers such as k-nearest neighbors and support

vector machines. Experimental tests with the UCI and face

data sets demonstrate that SRC–SPDR is effective with

relatively low computation cost
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Abstract Sparse-representation-based classification

(SRC), which classifies data based on the sparse recon-

struction error, has been a new technique in pattern rec-

ognition. However, the computation cost for sparse coding

is heavy in real applications. In this paper, various

dimension reduction methods are studied in the context of

SRC to improve classification accuracy as well as reduce

computational cost. A feature extraction method, i.e.,

principal component analysis, and feature selection meth-

ods, i.e., Laplacian score and Pearson correlation coeffi-

cient, are applied to the data preparation step to preserve

the structure of data in the lower-dimensional space.

Classification performance of SRC with structure-preserv-

ing dimension reduction (SRC–SPDR) is compared to

classical classifiers such as k-nearest neighbors and support

vector machines. Experimental tests with the UCI and face

data sets demonstrate that SRC–SPDR is effective with

relatively low computation cost

Keywords Sparse representation (coding) �
Classification � Feature extraction � Feature selection �
Dimension reduction � Structure preserving

Introduction

In recent years, sparse representation (or sparse coding) has

received a lot of attentions. The key idea is to search for the

least number of basis vectors (or atoms) in a dictionary

A 2 R
m�n to characterize a signal y 2 R

m (A has n atoms

and each atom is a vector with m elements). Therefore, the

signal can be represented as the sparse vectors x 2 R
n

based on atoms. The atoms in R
m are the column vectors in

A. Sparse representation improves performance in a num-

ber of applications [64], such as coding [42], classification

[62], image denoising [13], smart radio [30, 31], dimension

reduction [18, 60] and so on.

Sparse coding has extensive connections to biological-

inspired and cognitive approaches. In [42], the properties

of the primary visual cortex are used to interpret sparse

linear codes. In the research of V1 simple cell receptive

fields [70], the sparse coding is trained using biologically

realistic plasticity rules. In [16], sparse coding is used to

explain brain function in primate cortex. In [49],

extracting covariance patterns based on sparse coding

gives a promising direction in cognitive brain region

identification. The large-scale brain modeling is a prom-

ising direction in cognitive science. In [43], the applica-

tion of sparse coding in associative memory pattern has

been pointed out, which could contribute to the compli-

cated brain modeling. Recently, structured sparse coding

J. Xu

Operations and Information Management Department,

University of Pennsylvania, Philadelphia, PA 19104, USA

e-mail: jinxu@wharton.upenn.edu

G. Yang � Y. Yin � H. Man

Department of Electrical and Computer Engineering, Stevens

Institute of Technology, Hoboken, NJ 07030, USA

e-mail: gyang1@stevens.edu

Y. Yin

e-mail: yyin1@stevens.edu

H. Man

e-mail: Hong.Man@stevens.edu

H. He (&)

Department of Electrical, Computer, and Biomedical

Engineering, University of Rhode Island, Kingston, RI 02881,

USA

e-mail: he@ele.uri.edu

123

Cogn Comput

DOI 10.1007/s12559-014-9252-5

4



has been proposed based on neocortical representations

[23].

In this paper, we focused on classification based on

sparse representation in low dimension. The work is par-

tially inspired by a sparse-representation-based classifica-

tion (SRC) method recently proposed in [56], which

searches for the training samples producing the minimum

reconstruction error of testing data. Results reported in [56]

were very promising and competitive to those from tradi-

tional classification methods, such as support vector

machine (SVM) and k-nearest neighbors (KNN).

It is well known that sparse representation methods are

computationally intensive. The number and dimension of

atoms in a dictionary affect computation cost significantly.

In the community, there are three techniques to reduce the

computational complexity of sparse coding:

• Structure-preserving dimension reduction (SPDR): The

purpose is to reduce redundancy as well as retain

structure in the data preparation process. Many

researchers have devoted their work to achieve this

goal [4, 20, 24, 45, 66]. Various classic dimension

reduction methods have been applied to sparse coding.

Sparse latent semantic analysis (sparse LSA) was

proposed in [8], the sparsity constraint via the ‘1

regularization was added in the formulation of the LSA,

which is a popular unsupervised dimension reduction

tool. Experimental results show that sparse LSA could

be effective at reducing the cost of projection compu-

tation and memory. The multi-label sparse coding

framework with feature extraction [52] was applied to

automatic image annotation, and comparisons with

state-of-the-art algorithms demonstrated its efficiency.

In our previous work [59], we significantly extended

definitions for the sparse representation method and

investigate its analytical characteristics as well as

empirical results.

• Dictionary construction: The key to successful sparse

coding lies in the dictionary. There are two main

approaches to constructing a dictionary: analytic design

and dictionary learning. Analytic design establishes

proper atoms from abstract function spaces [34] or pre-

constructed dictionaries, such as wavelets [40] and

contourlets [5]. In dictionary learning [36], various

technologies such as regularization and clustering are

applied on training data to build dictionary. In [14], the

least-square error was utilized via the method of

optimal directions (MOD) to train dictionary. Online

dictionary learning [39] used stochastic approximations

to update dictionary with a large data set. Laplacian

score dictionary (LSD) [58], which is based on the

geometric local structure of training data, selected the

atoms for the dictionary.

• Efficient optimization algorithm: Different optimiza-

tion methods are embedded the sparse coding process

to improve computational efficiency. A convex version

of sparse coding was proposed in [3], a regularization

function via compositional norms was implemented in

convex coding, and boosting-style algorithm was

derived. Experimental results in the image denoising

task showed the advantages of the boosted coding

algorithm. In efficient sparse coding algorithms [38], ‘1

regularized and ‘2 constrained least-squares problem

was solved iteratively, and its applications on image

process showed the significant acceleration for sparse

coding. In [22], a nonlinear feed-forward predictor was

trained to produce the sparse code, and the proposed

method required 10 times less computation cost than

previous competitors.

In this paper, we present a combined SRC and SPDR

framework. Dimension reduction can effectively reduce the

computation cost and extract useful structural information.

It can also contribute to improved performance recognition

tasks: (i) Discriminative learning for dimensionality

reduction was proposed in [37]. A supervised form of latent

dirichlet allocation (LDA) was derived. The class label

information was incorporated into LDA, which enabled the

discriminative application of LDA. (ii) A five-step proce-

dure, which increased different dimension reduction

methods with classification, is proposed in [11]. In partic-

ular, partial least squares (PLS), sliced inverse regression

(SIR) and principal component analysis (PCA) were

compared in terms of classification performance with gene

expression data sets.

Similarly in our work, four dimension reduction meth-

ods, i.e., PCA, Laplacian score (abbreviated as LAP),

Pearson correlation coefficient (abbreviated as COR) and

minimum-redundancy maximum-relevancy (abbreviated as

mRMR) [45] are studied in the SRC framework, and

extensive experiments in comparison with other classic

classifiers (SVM and KNN) are carried out.

The contributions of this paper can be summarized as

follows:

• A comprehensive study of various SPDR methods in

sparse representation is presented. In particular, the

performance of feature extraction and feature selection

methods are examined.

• The proposed methods are successfully applied to both

the UCI data sets and face image data sets. While most

sparse coding work has concentrated on natural signal

and image data sets, very few have applied sparse

coding to the feature space data sets (UCI data sets).

• Very competitive classification results are obtained on

both UCI data sets and face data set, providing new

insight to the capabilities of sparse representation.
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The rest of the paper is organized as follows: Sect. 2

reviews related SPDR methods. Section 3 presents our

proposed SRC based on SPDR. Section 4 presents exper-

imental results of this framework on the UCI data sets and

face data sets. Finally, Sect. 5 gives conclusions and dis-

cusses future works.

Classic Dimension Reduction Methods with Structure

Preserving

Dimension reduction is an important method in knowledge

discovery [21] and machine learning [57]. Structure-pre-

serving [47] constraints can improve dimension reduction.

Normally, certain compact coordinates are obtained by

dimension reduction methods to preserve special properties

of the input data. The distances properties of data points

were preserved by the multidimensional scaling [10]. The

local geometry of the data set was studied by nonlinear

manifold learning [54]. Eigenvector-based multivariate

analysis [51] revealed the internal structure in terms of

variance.

Many sparse-representation-based dimension reduction

algorithms have been developed extensively recently,

including elastic net [68], sure independence screening [15]

and the Dantzig selector [7]. These researches are normally

focused on reducing the number of atoms for sparse rep-

resentation, such as setting certain sparse coefficients to

zeros. For example, in group structure sparsity [32] and

tree structure sparsity [35], the sparse coefficients were

modified based on this prior information. However, there is

little work on exploring the relationship between lower-

dimension data sets and sparse representation.

There are two categories for dimension reduction, fea-

ture extraction (such as PCA) and feature selection. PCA is

a linear transformation that best represents the data in the

least-squares sense. Any signal can be coarsely recon-

structed as a linear combination of principal components.

Sparse PCA [69] was proposed based on lasso constraints

with the result of sparse loading. In terms of feature

selection [67], it focused on searching for a subset of fea-

tures from the original feature sets. Some feature selection

methods [48, 61] combined with sparse representation have

been shown to be effectiveness.

A huge volume of literature is devoted to projecting

high-dimensional data to a lower dimensional space

through various methods, such as: locally linear embed-

ding, linear discriminant analysis, PCA, LAP [29] and

COR [24]. We just choose four of them to combine with

SRC, following the previous work [56] that SRC is not

sensitive to a particular projection method.

PCA Criteria and Eigenface

PCA was first used on face recognition by Turk and

Pentland [51], which is now known as eigenfaces. Given a

training set of face images I1; I2; . . .; In, the first step is to

represent each image Ii with a vector Ci, and then subtract

the average face a ¼ 1
n

Pn
i¼1 Ci from the training face

image vector Ui ¼ Ci � a.

Next, eigenvalues and eigenvectors of the covariance

matrix C can be obtained.

C ¼ 1

n

Xn

i¼1

UnU
T
n ð1Þ

Typically, only the n most significant eigenvalues and their

corresponding eigenvectors are calculated. The resulting

eigenvectors are the eigenfaces. Each test image will be

projected onto these eigenvectors, and the coefficient

vectors are then used in the classification.

PCA is a popular dimension reduction method, which

projects the data in the direction of maximal variances to

obtain the minimized reconstruction error. Normally, it is a

linear data transformation to preserve the global structure,

but kernel-based PCA could be applied to nonlinear

problems. A PCA based method has successfully applied in

identification of human population structure [44].

Laplacian Criteria for Dimension Reduction

The Laplacian method preserves local geometrical struc-

tures without the data labels. LAP [29] is a new feature

selection method based on Laplacian eigenmaps and

locality-preserving projection. The score evaluates the

feature’s importance according to its locality-preserving

ability.

For the data Y ¼ ½y1; y2; . . .; yn� with feature set

F ¼ ½f1; f2; . . .; fm�, assume Vr is the LAP for the rth fea-

ture fr, the LAP is calculated as:

1. It first constructs a nearest neighbor graph G with

different data nodes (yi and yj, i; j ¼ 1; . . .; n) in data

sets. Sij ¼ e�
kyi�yjk2

t represents the score between data yi

and yj, where t is a suitable constant.

2. Then Sr can be defined as

Vr ¼
~fT
r L ~fr

~fT
r D ~fr

ð2Þ

where D ¼ diagðS1Þ; 1 ¼ ½1; . . .; 1�T ; L ¼ D� S, and
~fr is a kind of normalization via:

Cogn Comput
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~fr ¼ fr �
fT

r Dfr

1T D1
ð3Þ

In LAP, the nearest neighbor graph based on the data points

is established, and the local structure is evaluated by the

weights between nodes. Therefore, the structure in the

graph preserves the discriminate features in the feature

space.

Pearson Correlation Coefficient Criteria and mRMR

Pearson correlation coefficient is based on the covariance

matrix and can select the feature variable with target labels

[24]. Normally, it is a supervised feature selection method.

The COR between two different variables is:

Pðai; ajÞ ¼
covðai; ajÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaiÞ � varðajÞ

p ð4Þ

According to the max-dependency and min-redundancy

[45] concepts, the feature selection process can combine

the dependency and redundancy criteria together. In this

work, these criteria are used in the COR. First, max-rele-

vance criteria are applied from different features (f i 2 F) to

the target c to get the most relevant feature.

max DðF; cÞ; D ¼ 1

jFj
X

fi2F

Pðf i; cÞ ð5Þ

Then for min-redundancy criteria, the selected feature is:

min RðFÞ; R ¼ 1

jFj2
X

f i;f j2F

Pðf i; f jÞ ð6Þ

In order to combine max-relevance and min-redundancy,

an operator UðD;RÞ is defined. It is a simple form of

optimization of D and R.

max UðD;RÞ; U ¼ D� R ð7Þ

In the process of incremental feature selection [45], sup-

pose we have chosen fm� 1g features with the feature set

Fm�1. In the m step, it selects the mth feature from feature

set fF� Fm�1g. This can be operated from UðD;RÞ. The

criteria are:

max
f j2fF�Fm�1g

Pðf j; cÞ �
1

m� 1

X

f i2Fm�1

Rðf j; f iÞ
" #

ð8Þ

Our method constructs sub-feature space with the features

most connected with the class (category) center while fil-

tering redundant features, which are criteria of dependence

structure between the features and class centers. For the

mRMR method, it uses mutual information to build the

relations between the features, which is popular and robust

in many applications, the detailed settings are described in

[45].

SRC Based on Dimension Reduction

In sparse representation, assume a dictionary with a set of

training data vectors (or atoms) A ¼ ½a1
1; . . .;

an1

1 ; . . .; a1
c ; . . .; anc

c �, where A 2 R
m�n, c is class label for

each atom, ni is the number of atoms associated with the

category i. Then a new test data vector y is represented in

the form:

y ¼ Ax 2 R
m ð9Þ

where x ¼ ½0; . . .; 0; ai;1; ai;2; . . .; ai;ni
; 0; . . .; 0�T 2 R

n is the

sparse vector (coefficients). In order to calculate x, we use

the ‘1-regularized least-squares method [33, 50] defined as:

bx ¼ arg minfky� Axk2
2 þ kkxk1g ð10Þ

In [56], SRC utilizes the representation residual to predict

class labels for test samples. In particular, a characteristic

function (di : Rn ! R
n) is defined for each category i,

which chooses the sparse coefficients via the category. And

the classification is based on:

labelðyÞ ¼ arg min riðyÞ; riðyÞ ¼ ky� AdiðxÞk2 ð11Þ

In their work, some related dimension reduction methods

with SRC are combined to show that SRC is robust with

low-dimensional features from images. In particular, ran-

dom face, downsampling face and Fisher face are used as

low-dimensional features for SRC. The paper claims that

the choice of dimension reduction methods does not sig-

nificantly impact SRC performance, and sufficient dimen-

sionality (such as dimension 100 for face data) of the data

is more important for SRC.

We follow this direction to propose the SPDR method,

which we apply on the UCI and image data sets. In details,

a dimension reduction projection PSðBÞ is applied to the

input data Y and all the atoms in A, where subspaces are

denoted by S, and SðBÞ means the subspace spanned by

matrix B, the dimension of the data would be changed from

dimension m to dimension d (m [ d). In our work, the

matrix B is obtained from PCA, LAP, COR and mRMR.

Algorithm 1 shows in detail the procedure of the SRC

method with SPDR. In classification, a function w is built

from a training set ðYi; ciÞ, i ¼ 1; . . .; n. The goal of

Cogn Comput
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dimension reduction for classification is to retrieve sub-

spaces [9, 53] which are the most relevant to the classifi-

cation, noted as subspace SðBÞ such that:

uðYÞ ¼ uðPSðBÞYÞ ð12Þ

the decision rule u established from the projected data

PSðBÞY should be the same as that established from the

original data Y.

A case study of this algorithm is shown in Fig. 1. The

algorithm is run over the ‘‘Libras Movement’’ data set from

the UCI source [17]. The dimension of data is reduced from

original 90 to 20 via PCA, LAP and COR, respectively. SRC

is then applied to a test vector y based on a dictionary con-

taining 180 training vectors. The SRC on test data is shown in

Fig. 1. In particular, the sparse coefficients based on the

dictionary and the corresponding representation residuals on

different classes are exhibited. We can observe that:
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Fig. 1 Sparse-representation-

based classifier is applied to the

‘‘Libras Movement’’ data set

with 3 different feature selection

methods. For each case, the

upper figure shows sparse

coefficients based on the

corresponding dictionaries (the

dots denote the non-zero

coefficients), and the lower

figure shows representation

residuals riðyÞ on different

categories
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• The classification performance is the same in each of

these three cases, and the dimension-reduced data are

sufficient for SRC to make judgments.

• The coefficients from LAP and COR are sparser than

those from PCA.

• Category 4 has the second smallest residual, so it

provides an indication of the similarity between

category 4 and category 7. There may be potential for

SRC to cluster similar categories.

• The results from PCA and LAP are similar, partially

because they are both unsupervised feature selection

methods. COR, which is a supervised feature selection

method, produces results that are quite different from

the others.

Complexity Discussion

Suppose we have a signal f 2 R
N , it can be decomposed

into an orthonormal basis W and a coefficient vector x,

which can be written in the following way:

f ¼
XN

i¼1

xiwi ¼ Wx ð13Þ

The vector x is N � 1 dimension, and orthobasis W is in

R
N�N . x is called S-sparse if it has at most S non-zero

elements. The signal f is composed of a best subset of S

columns that span in an orthogonal basis of size N � N. It

implies that the choices of finding out this particular subset

is N
S

� �
.

To reconstruct the signal f from a linear combination of

vectors, we would like to constrain the error to be smaller

than a fixed approximation error as well as only keep the

least number of vectors that are orthogonal with each other.

However it is an NP-hard problem [2]. In past literature,

before the restricted isometry property (RIP) condition was

discovered, the matching pursuit method was developed to

solve ‘0 norm minimization problems. Here ‘0 norm is a

pseudo norm and defined as kxk‘0
,#fi s:t: x½i� 6¼ 0g.

In the compressive sensing problems, a measurement

space is introduced where there is an observation y 2 R
m,

and y is obtained by a random sampling matrix U 2 R
m�N .

y ¼ UWx ð14Þ

Therefore, the orthogonal transforming space W is mea-

sured by the sampling matrix U. Furthermore, there are S

vectors selected by the sparse vector x from the matrix UW,

making up an orthogonal subspace RS, and hence, their

linear combinations are the observation of the original

vector. From the sampled observation, x, the random

sensing matrix U can be found under the fixed space W,

and thereby recover the original signal f .

By giving theoretical proof in [6], that the RIP condition

holds, ‘1 norm minimization can reconstruct the signal as

well as the ‘0 norm with overwhelmingly high probability

if m ¼ OðS logðN=SÞÞ. Furthermore, ‘1 norm is a convex

optimization, and now can be solved via LASSO regression

which is much more tractable than computing the ‘0 norm.

Lasso has relatively low polynomial computational cost of

Oðm2NÞ time [41].

Using the sparse representation to reconstruct a signal

relies on the same computation framework as the com-

pressive sensing, in the way of sparsely selecting a subset

of atoms that are linearly independent with each other,

from the over-complete dictionary A 2 R
M�N(M\\N).

In order to reduce the expensive computation cost dur-

ing optimization, we propose a hierarchical sparse coding

framework, which has a dictionary with fewer dimensions

but without compromising the performance in the multi-

label classification task. On one hand, the dimension

reduction before sparse coding classification has an over-

head computation cost. On the other hand, it reduces the

cost in the sparse coding stage. The dimension is reduced

in the space of R
m, by selecting certain higher scored

elements along the columns of a dictionary. However it has

a power to cost in the computation of Lasso optimization

Oðm2NÞ. In our work, we have experimented with reducing

m to different levels, not only to lessen the computational

cost. In doing so, we discovered that with only a very small

number of features, we can preserve the structure of the

Cogn Comput

123

9



dictionary, and thereby keeping the classification perfor-

mance competitive.

Experimental Results

In this section, we present experimental results on different

data sets to study the effectiveness of SRC with dimension

reduction. The experiments are conducted on the UCI data

sets [17] and the extended Yale face database B [19].

Experimental Setup

In these experiments, we first apply three dimension

reduction methods to transform the data to a lower

dimensional space. As mentioned before, PCA is a linear

data transformation, LAP is an unsupervised feature

selection method and COR and mRMR are supervised

feature selection methods. Then, we use three classification

methods: SRC, SVM and KNN, to show the classification

accuracy. SVM is an effective and popular classifier [46],

which uses kernel methods to construct class boundaries in

higher dimensional space. KNN is a classic classifier and

has achieved good performance in recent studies [12].

Each data set is randomly partitioned to training and

testing sets at a 1:1 ratio. Each experiment is carried out five

times, and the final results are averaged. In the SRC method,

the entire training set are included in the dictionary, which is

the same setting as the work reported in [56, 63].

In these experiments, the sparse coding software is l1-ls

package [33] from Stanford university, SVM and KNN

classifiers are from the Java toolbox [55], and parameters

of the tools are set to the default. For SVM and KNN, the

parameters are chosen based on the performance over the

test set. In detail with SVM, we used three kernels (linear

kernel, polynomial kernel and radial basis function kernel),

and the kernel parameters are 0.5 and 0.05. There are six

outputs for SVM testing. In the KNN side, the number of

neighbors ‘‘k’’ is set as 1 or 5, the distances we have used

are L1 distance, L2 distance and cosine distance. There-

fore, we also get six results for KNN over the test set. The

final parameters are those yielded higher average perfor-

mance over the test set. In Fig. 2, we have shown a case for

data glass with PCA dimension reduction. The three best

SVM and KNN results are listed.

Experiments on UCI Data Sets

Our experiments cover five benchmark UCI data sets [17].

Due to the difficulty of multi-category classification prob-

lems, most selected data sets are multi-category data sets

(except ‘‘Anneal’’). Table 1 shows the detailed information

of the experimental data sets.

In these experiments, the dimension of the data is

changed from small to large to evaluate the effect of

number of features on classification accuracy. Then SRC,

SVM and KNN are applied to the lower dimensional data

to obtain the classification accuracies. The details are

shown in following figures. Figure 3 shows the results for

data set ‘‘Wine.’’ With PCA and COR, SRC and SVM have

higher accuracies in higher dimensions. With LAP, KNN

performs slightly better than SVM. In mRMR results, KNN

has a higher accuracy than SVM and SRC.

The results for the data set ‘‘Glass’’ are shown in Fig. 4.

SRC produces consistently higher accuracies in all three

dimension reduction cases. SRC with PCA tends to be

stable from dimension 3. SRC with COR reaches more than

95 % from dimension 5 and up, which is much higher than

the results of SVM with COR and KNN with COR. For

mRMR method, SRC’s performance improves dramati-

cally with over 4 features. On this particular data set, our

results can be compared with the results presented in [1]. In

their work, ‘‘Boost-NN’’, ‘‘Allwein’’ and ‘‘Naive k-NN’’

were applied on the whole data set with size of 214 for

training, and the achieved classification rates were 75.6,
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Classification Comparsion for Data Glass based PCA dimension reduction

SVM−1
SVM−2
SVM−3
knn−1
knn−2
knn−3
SRC

Fig. 2 SVM and KNN with different parameters, 3 best SVM and 3

best KNN performances based on different parameters are shown. In

the final comparison, SVM-2 (with polynomial kernel (0.5)) and knn-

2 (with 5 neighbors and cosine distance) are chosen

Table 1 UCI data sets

Name Feature number Total size Test size Class

Wine 13 178 89 3

Glass 10 214 107 7

Libras Movement 90 360 180 15

Wine Quality 11 4,898 2,449 6

Anneala 11 798 399 2

a The missing feature has been removed
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74.8 and 73.2 %, respectively. These results are similar to

our SVM and KNN results with PCA or COR. However, in

our case, a smaller dimension and half of data set are used

in training. SRC with PCA or COR clearly results in better

performance on these data sets.

In Fig. 5, SRC results show the obvious higher accura-

cies on the ‘‘Libras Movement’’ data set. In PCA subfigure,

when the accuracies of SVM and KNN deteriorate, SRC’s

accuracy remains at its original level, demonstrating the

ability of SRC to deal with noisy data.
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For the data set ‘‘Wine Quality’’ in Fig. 6, SRC shows

similar performance to SVM and KNN in PCA and LAP

features. The accuracies increase steadily as a function of

increasing feature dimensions. SRC with PCA tends to

have higher accuracy in higher dimensions (from dimen-

sion 6 and up). In the case of COR, SRC with COR has the

worst performance, which needs to be further investigated.

For mRMR, SRC has a stable performance from dimension

of 6.

‘‘Anneal’’ in Fig. 7 is the only binary data set in our

experiment. SRC performs better than other classifiers in

the PCA case, and SRC shows similar results with KNN in
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Fig. 5 Classification result for

data Libras Movement
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LAP and COR cases. SVM is stable on this data set but the

accuracy is not competitive. KNN is has advantages in

mRMR case.

Table 2 is a comprehensive list of results over the UCI

data sets. The highest accuracies are highlighted among

SVM, KNN and SRC. The outputs of SRC have enhanced

performance in most cases. Table 3 shows the standard

deviation based on the accuracy from 50 to 80 %. Note the

small standard deviation for SRC, highlighting the stability

of SRC compared with SVM and KNN.

Experiments on Face Recognition

The extended Yale face database B [19] is used in the

second experiment. In this data set, there are 2,414 faces

images from 38 people, which are captured in different

environments. Each face image is 54� 48 pixels large.

Inspired by recent work [63] using Gabor features for face

recognition, the experiment is conducted to investigate

SRC–SPDR framework on Gabor features. A set of Gabor

filters, which contains 5 scale levels and 8 orientations, are
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Fig. 7 Classification result for

data Anneal

Table 2 Comparisons of classification accuracy (%) based on UCI data sets

Data set PCA LAP COR mRMR

20 % 50 % 80 % 20 % 50 % 80 % 20 % 50 % 80 % 20 % 50 % 80 %

Wine-SVM 70.79 93.26 92.13 75.28 86.52 91.01 47.19 83.15 92.13 23.60 93.26 95.51

Wine-KNN 68.54 88.76 85.39 81.90 87.64 88.76 56.18 76.40 85.39 60.67 92.13 93.26

Wine-SRC 70.79 92.58 92.65 80.24 92.13 93.26 53.93 84.27 91.01 41.57 80.90 83.15

Glass-SVM 53.27 78.50 77.57 33.64 50.47 70.09 71.03 72.90 71.03 67.29 67.29 68.22

Glass-KNN 51.40 74.77 76.64 32.71 48.60 67.29 69.16 72.90 73.83 71.96 69.16 70.09

Glass-SRC 54.21 94.39 97.20 45.79 69.16 91.59 71.96 97.20 97.20 73.83 87.85 91.59

Libras-SVM 62.22 56.67 42.78 68.33 77.78 75.56 58.89 69.44 74.44 58.33 63.33 67.22

Libras-KNN 61.72 40.56 37.78 76.11 78.33 78.89 66.11 73.89 77.78 69.44 77.22 78.89

Libras-SRC 81.00 81.00 81.00 80.00 80.00 79.44 79.44 75.56 82.78 74.44 79.44 80.00

Wquality-SVM 49.75 53.38 57.00 42.75 55.88 56.50 54.75 56.00 55.25 54.00 55.13 54.25

Wquality-KNN 44.13 48.63 52.25 49.88 53.25 52.13 52.63 55.75 51.13 51.00 54.88 54.38

Wquality-SRC 48.50 55.13 58.75 45.50 58.63 57.38 50.00 59.25 58.13 49.75 51.38 56.75

Anneal-SVM 75.86 75.86 75.86 75.37 76.11 75.86 75.86 76.11 75.86 75.86 75.12 76.11

Anneal-KNN 75.86 76.60 76.85 82.02 74.88 76.35 79.06 80.05 75.86 77.59 83.99 75.86

Anneal-SRC 75.62 76.35 77.09 81.53 76.60 77.09 80.05 78.08 77.09 75.86 79.06 77.09
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applied to each face image with the same parameters as in

[63]. In total, there are 40 Gabor filters, and each Gabor-

face is with the size of 6� 6. An example of Gaborfaces is

shown in the left of Fig. 8. Then, the Gabor features with

1,440 dimensions are used to perform similar experiments

as the one described in Sect. 5.1.

In Fig. 8, we also evaluate selecting 100–800 features

by the LAP and COR methods. From this figure, one can

see that the 100 and 200 features selected by these two

methods are quite different. However, the accuracy of the

100 LAP and COR-selected features is similar under all

three classifiers, as shown in Fig. 9. There are also obvious

diversities between the selected features when the dimen-

sions are 400 and 800. Hence, we may conclude that Gabor

features have a lot of redundancy, and SPDR is necessary.

In Fig. 9, SRC shows a clear performance improvement in

the case of LAP and COR. Although the performance of

SRC with PCA is a little worse than SVM with PCA, the

accuracy is still [ 92 % and remain stable at 95 % when

the feature dimension is [ 300.

Figure 9 shows the classification rates for number of

dimensions ranging from 100 to 1,000. In particular, it is

interesting to investigate the classification performance at

very low dimensions. In Table 4, classification results for

lower dimension (under 100) of Gabor features are listed.

The number of dimensions selected varies from 10 to 100,

out of the original 1,440. In the cases of COR, LAP and

mRMR, SRC always obtain higher accuracy than SVM and

KNN. With PCA method, the SRC accuracies are the

highest when the dimension is smaller than 80.

In addition to Gabor features, we also attempted to study

the performance of SRC–SPDR on the original image pixel

values. The original pixel number is 54� 48 = 2,592,

which is too large for SRC and dimensionality reduction is

necessary. In this experiment, three dimension reduction

methods are applied on the images to reach dimensions

from 10 to 100. Then SRC is applied to the dimension-

reduced vector to generate the classification results in

Table 5. The results are compared with results from SRC

using Gabor-PCA features, SRC using random-face fea-

tures [56] and SRC using downsample-face features [56].

In order to achieve the dimension from 10 to 100, the

downsample process is carried out with the ratios 1/260,

1/130, 1/87, 1/65, 1/52, 1/43, 1/37, 1/32, 1/29 and 1/26,

Table 3 Standard deviation of accuracy

Different performance PCA LAP COR mRMR

Wine-SVM 0.020 0.017 0.024 0.018

Wine-KNN 0.021 0.017 0.049 0.008

Wine-SRC 0.014 0.018 0.016 0.012

Glass-SVM 0.0047 0.11 0.0093 0.013

Glass-KNN 0.0089 0.10 0.0090 0.025

Glass-SRC 0 0.018 0 0.048

Libras-SVM 0.062 0.010 0.028 0.023

Libras-KNN 0.032 0.007 0.021 0.008

Libras-SRC 0 0.003 0.032 0.005

Wquality-SVM 0.017 0.009 0.003 0.011

Wquality-KNN 0.012 0.008 0.020 0.012

Wquality-SRC 0.008 0.002 0.017 0.008

Anneal-SVM 0 0.003 0.003 0.004

Anneal-KNN 0.004 0.006 0.019 0.038

Anneal-SRC 0.003 0.003 0.005 0.009

Fig. 8 Face image process, the

Gabor features selected with

LAP and COR are shown
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Fig. 9 Classification results for

high-dimensional Gabor face

features

Table 4 Classification accuracy

(%) based on Gabor features

The highest accuracy among all

the methods (columns) are

highlighted in bold

Dimension (d) 10 20 30 40 50 60 70 80 90 100

PCA-SVM 29.22 72.58 83.84 87.99 89.31 90.14 91.23 91.72 92.30 92.63

PCA-KNN 26.57 65.65 80.13 83.61 87.09 88.41 89.98 90.65 91.14 90.89

PCA-SRC 36.42 73.84 84.35 88.49 90.23 91.23 91.31 92.05 92.30 92.30

LAP-SVM 39.40 59.35 67.38 74.34 77.73 79.72 80.71 82.78 84.77 85.76

LAP-KNN 34.19 50.99 59.19 64.74 67.05 68.21 68.79 70.03 72.27 73.51

LAP-SRC 38.74 66.47 77.07 82.04 83.69 85.68 86.09 88.08 88.49 88.49

COR-SVM 42.96 60.51 70.20 77.90 79.72 81.54 83.53 84.69 85.60 86.75

COR-KNN 39.32 52.40 62.50 68.29 70.86 71.11 72.76 75.66 75.66 76.82

COR-SRC 42.38 64.49 77.40 83.36 85.76 88.00 89.32 89.90 89.74 90.65

mRMR-SVM 12.91 39.82 58.03 65.81 70.53 73.01 77.73 78.56 81.13 81.54

mRMR-KNN 46.27 63.41 67.05 71.61 73.18 76.57 77.57 76.41 77.07 78.39

mRMR-SRC 48.76 69.87 77.48 82.78 84.85 88.00 88.33 87.83 88.91 89.74

Table 5 SRC classification

accuracy (%) on different

feature sets

The actual dimension for *, M

and O are 61, 71 and 81 due to

the downsample process

Dimension (d) 10 20 30 40 50 60 70 80 90 100

Gabor-PCA 36.42 73.84 84.35 88.49 90.23 91.23 91.31 92.05 92.30 92.30

Pixel-PCA 48.34 83.86 91.06 92.55 94.45 94.87 95.12 95.36 95.94 95.53

Gabor-LAP 38.74 66.47 77.07 82.04 83.69 85.68 86.09 88.08 88.49 88.49

Pixel-LAP 43.79 71.11 80.13 83.11 85.92 87.67 87.42 89.65 90.48 91.14

Gobor-COR 42.38 64.49 77.40 83.36 85.76 88.00 89.32 89.90 89.74 90.65

Pixel-COR 52.57 70.61 78.06 83.69 85.26 86.26 87.75 87.91 88.49 89.16

Gobor-mRMR 48.76 69.87 77.48 82.78 84.85 88.00 88.33 87.83 88.91 89.74

Pixel-mRMR 50.66 69.95 79.06 83.86 86.42 87.25 89.24 90.31 90.07 91.31

Pixel-Random 40.23 64.07 74.59 81.21 85.35 87.25 89.16 90.56 91.97 92.63

Pixel-

Downsample

38.22 63.25 79.64 82.62 81.62 89.65(*) 91.64(M) 92.64(O) 92.80 93.29
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respectively. The actual dimensions are shown at the bot-

tom of Table 5.

The highest classification rates at different dimensions

are highlighted in Table 5. It is interesting to note that

pixel-PCA always surpass Gabor-PCA, which indicates

that SRC with dimension reduction works better in the

natural signal space than in the feature space. SRC with

pixel-PCA features at dimension 20 can reach 83.86 %

accuracy. Compared with the results proposed in [65]with

the same experiment settings as ours, their work can

achieve 81.5 % in the dimension of 56. When compared

with SRC on random face and SRC on downsample face

[56], SRC with pixel-PCA performs significantly better,

especially at very low dimensions (� 40). It is important to

point out that the results reported in [56] were based on

face images with size of 192� 168, while our results are

based on face images with size of 54� 48.

Conclusion

A comprehensive study is conducted on a variety dimension

reduction methods within the SRC framework. The purpose

is to use DR techniques to improve the sparse coding process,

both in efficiency and accuracy. Experiments on the UCI and

face data demonstrate the effectiveness of this combination.

Particularly in data Glass and data Libras Movement, SRC is

able to obtain around 20 and 30 % classification accuracy

improvement compared to SVM and KNN at lower dimen-

sions. And SRC with Pixel-PCA feature can achieve more

than 90 % accuracy at dimension 30 on the face data set.

Based on the results, we have shown both experimentally and

theoretically that SRC is efficient with dimension reduction

methods. Due to the diversity of different data sets, it is not

clear which dimension reduction method is the best fit for

SRC, which is similar to the conclusion in the previous work

[56]. However, we still could observe that PCA ? SRC

shows more advantages compared with other combinations,

especially in the face data set.

There are many interesting future research topics along

this direction. For instance, with the continuous of the big

data challenge, how to integrate the sparse representation

with complex data analysis tasks such as imbalanced data

[27], dynamic stream data [25, 26], integrated prediction

and optimization [28], among others, have become signif-

icant research topics in the society. New research founda-

tions, principles and algorithms are needed to tackle such

challenges. Furthermore, large-scale experimental studies

are also needed to fully justify the effectiveness of the

proposed method. Finally, as intelligent data analysis is

critical in many real-world applications, how to bring the

proposed techniques to a wide range of application

domains is another important future research topic.
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